1.

D(x+y)ln(1+xy)1xy\iint_D\frac{(x+y)\ln(1+\frac{x}{y})}{\sqrt{1-x-y}}

u=1xyv=1+xy令u=\sqrt{1-x-y},v={1+\frac{x}{y}}

u1u2uvlnvdxdy\int_u\frac{(1-u^2)}{u}\int_vlnvdxdy

x/ux/vy/uy/v\begin{vmatrix} \partial{x}/\partial{u} & \partial{x} /\partial{v} \\ \partial{y}/\partial{u} & \partial{y}/\partial{v} \\ \end{vmatrix}

J=2uv1u2v22u(v1)v1u2v2J= \mid\begin{vmatrix} \frac{-2u}{v}&\frac{1-u^2}{-v^2}\\ \frac{-2u(v-1)}{v}&\frac{1-u^2}{v^2} \end{vmatrix} \mid

u1u2uvlnv2u(1u2)v2dudv=u2(1u2)2duvlnvv2dv\int_u\frac{(1-u^2)}{u}\int_vlnv*\frac{2u(1-u^2)}{v^2}dudv=\int_u{2(1-u^2)^2}du\int_v\frac{lnv}{v^2}dv

fg=fgfg\int{f}{g'}=fg-\int{f'}{g}

lnvv2dv=lnv(1v)1v1vdv\int\frac{lnv}{v^2}dv=lnv*(-\frac{1}{v})-\int-\frac{1}{v}*\frac{1}{v}dv

2.

f(x)为连续函数,f(x)=3x202f(x)dx2,则f(x)=f(x)为连续函数,f(x)=3x^2-\int_0^2f(x)dx-2,则f(x)=

02f(x)dx=A,f(x)=3x2A2,02f(x)dx=02(3x2A2)dx设\int_0^2f(x)dx=A,f(x)=3x^2-A-2,\int_0^2f(x)dx=\int_0^2(3x^2-A-2)dx

=X3022A4=X^3|_0^2-2A-4

3A=4,A=433A=4,A=\frac{4}{3}

f(x)=3x2103f(x)=3x^2-\frac{10}{3}

3.

y=y(x)由方程xef(y)=eyln29决定,f具有二阶导,且f1,d2y2d2x2=y=y(x)由方程xe^{f(y)}=e^y\ln29决定,f具有二阶导,且f'\neq1,则\frac{d^2y^2}{d^2x^2}=

lnx+f(y)=y+lnln29lnx+f(y)=y+\ln\ln29

1x+f(y)y=y\frac{1}{x}+f'(y)y'=y'

y=1x(1f(y))y'=\frac{1}{x(1-f'(y))}

y=1f(y)xf(y)yx2(1f(y))2,消掉yy''=-\frac{1-f'(y)-xf''(y)y'}{x^2(1-f'(y))^2},消掉y'

y=f(y)(1f(y))2x2(1f(y))3y''=\frac{f''(y)-(1-f'(y))^2}{x^2(1-f'(y))^3}

4.

xn=(1+a)(1+a2)...(1+a2n),其中a<1,limnxnx_n=(1+a)(1+a^2)...(1+a^{2^n}),其中|a|\lt1,求\lim_{n\rightarrow\infty}x^n

xn=(1a)(1+a)(1+a2)...(1+a2n)1a=1a2n+11ax_n=\frac{(1-a)(1+a)(1+a^2)...(1+a^{2^n})}{1-a}=\frac{1-a^{2^{n+1}}}{1-a}

a<1,limna2n+1=0当|a|\lt1,\lim_{n\rightarrow\infty}a^{2^{n+1}}=0

limnxn=11a\lim_{n\rightarrow\infty}x_n=\frac{1}{1-a}

5.

limx+ex(1+1x)x2求\lim_{x\rightarrow+\infty}e^{-x}(1+\frac{1}{x})^{x^2}

(1+1x)x2=ex2ln(1+1x)(1+\frac{1}{x})^{x^2}=e^{x^2\ln{(1+\frac{1}{x})}}

x时,当x\rightarrow\infty时,

x2ln(1+1x)=x2(1x12x2+o(1x2))x^2\ln{(1+\frac{1}{x})}=x^2(\frac{1}{x}-\frac{1}{2x^2}+o(\frac{1}{x^2}))

这一步的由来是ln(1+x)带有佩亚诺余项的泰勒展开换元x所得,具体可看一些 lnx 的展开

因此,limxex(1+1x)x2=exex12=e12因此,\lim_{x\rightarrow\infty}e^{-x}(1+\frac{1}{x})^{x^2}=e^{-x}e^{x-\frac{1}{2}}=e^{-\frac{1}{2}}

6.

s>0,I=0esxxndx(n=1,2)设s\gt0,求I=\int_0^\infty{e^{-sx}}x^ndx(n=1,2\dots)

当s>0,由洛必达法则得

limxesxxn=limxnxn1sesx==limxn!snesx=0\lim_{x\rightarrow\infty}e^{-sx}x^n=\lim_{x\rightarrow\infty}\frac{nx^{n-1}}{se^{sx}}=\dots=\lim_{x\rightarrow\infty}\frac{n!}{s^ne^{sx}}=0

In=0esxxndx,则令I_n=\int^\infty_0e^{-sx}x^ndx,则

In=1s0xndesx=1sxnesx0+1s0esxdxn=ns0esxxn1dx=nsIn1I_n=-\frac{1}{s}\int^\infty_0x^nde^{-sx}=-\frac{1}{s}x^ne^{-sx}|^\infty_0+\frac{1}{s}\int^{\infty}_0e^{-sx}dx^n=\frac{n}{s}\int^\infty_0e^{-sx}x^{n-1}dx=\frac{n}{s}I_{n-1}

In=nsn1sIn2==n!sn1I1I_n=\frac{n}{s}\frac{n-1}{s}I_{n-2}=\dots=\frac{n!}{s^{n-1}}I_1

I1=0esxx1dx=1sxnesx0++1s0esxdx=1s2esx0+=1s2(01)=1s2I_1=\int^\infty_0e^{-sx}x^1dx=-\frac{1}{s}x^ne^{-sx}|^{+\infty}_0+\frac{1}{s}\int^\infty_0e^{-sx}dx=-\frac{1}{s^2}e^{-sx}|^{+\infty}_0={-\frac{1}{s^2}}(0-1)=\frac{1}{s^2}

In=n!sn1I1=n!sn+1则I_n=\frac{n!}{s^{n-1}}I_1=\frac{n!}{s^{n+1}}

7.

设函数f(x)具有二阶连续导数

r=x2+y2,g(x,y)=f(1r),2g2x2+2g2y2r=\sqrt{x^2+y^2},g(x,y)=f(\frac{1}{r}),求\frac{\partial^2g}{\partial^2{x^2}}+\frac{\partial^2g}{\partial^2{y^2}}

rx=xr,ry=yr\frac{\partial{r}}{\partial{x}}=\frac{x}{r},\frac{\partial{r}}{\partial{y}}=\frac{y}{r}

所以gx=xr3f(1r)所以\frac{\partial{g}}{\partial{x}}=-\frac{x}{r^3}f'(\frac{1}{r})

(r33r2xxrr6f(1r)+f(1r)1r2xrxr3)-(\frac{r^3-3r^2x*\frac{x}{r}}{r^6*}*f'(\frac{1}{r})+f''(\frac{1}{r})*-\frac{1}{r^2}*\frac{x}{r}*\frac{x}{r^3})

2g2x2=x2r6f(1r)+2x2y2r5f(1r)\frac{\partial^2{g}}{\partial^2{x^2}}=\frac{x^2}{r^6}f''(\frac{1}{r})+\frac{2x^2-y^2}{r^5}f'(\frac{1}{r})

利用x和y的对称性可得

2g2y2=y2r6f(1r)+2y2x2r5f(1r)\frac{\partial^2{g}}{\partial^2{y^2}}=\frac{y^2}{r^6}f''(\frac{1}{r})+\frac{2y^2-x^2}{r^5}f'(\frac{1}{r})

所以

2g2x2+2g2y2=1r4f(1r)+1r3f(1r)\frac{\partial^2g}{\partial^2{x^2}}+\frac{\partial^2g}{\partial^2{y^2}}=\frac{1}{r^4}f''(\frac{1}{r})+\frac{1}{r^3}f'(\frac{1}{r})

8.

求直线l1:y={xy=0z=0,与直线l2x24=y12=z31的距离求直线l_1:y=\begin{cases} x-y=0 \\ z=0, \end{cases} 与直线l_2\frac{x-2}{4}=\frac{y-1}{-2}=\frac{z-3}{-1}的距离

直线l1的对称式方程为l1:x1=y1=z0直线l_1的对称式方程为l_1:\frac{x}{1}=\frac{y}{1}=\frac{z}{0}

两直线的方向向量分别为

l1=(1,1,0),l2=(4,2,1)\vec {l_1}=(1,1,0),\vec{l_2}=(4,-2,-1)

已知点为

P1(0.0.0),P2(2,1,3)P_1(0.0.0),P_2(2,1,3)

并记

a=P1P2=213),l1×l2=(1,1,6)\vec{a}=\overrightarrow{P_1P_2}=(2,1,3),\vec{l_1}\times\vec{l_2}=(-1,1,-6)

于是两直线间的距离为

d=a(l1×l2)l1×l2=2+1182=382d=\frac{|\vec{a}*(\vec{l_1}\times\vec{l_2})|}{|\vec{l_1}\times\vec{l_2}|}=\frac{|-2+1-18|}{\sqrt{2}}=\frac{\sqrt{38}}{2}

9.

limx(1+x)2xe2(1ln(1+x))x求\lim_{x\rightarrow\infty}\frac{(1+x)^{\frac{2}{x}}-e^2(1-\ln(1+x))}{x}

做变换得原式=e2xln(1+x)e2(1ln(1+x))x做变换得原式=\frac{e^{\frac{2}{x}\ln(1+x)}-e^2(1-\ln(1+x))}{x}

右式=limxe2ln(1+x)x=e2右式=\lim_{x\rightarrow\infty}\frac{e^2\ln(1+x)}{x}=e^2

左式=limxe2xln(1+x)e2x=e2limxe2xln(1+x)21x左式=\lim_{x\rightarrow\infty}\frac{e^{\frac{2}{x}\ln(1+x)}-e^2}{x}=e^2\lim_{x\rightarrow\infty}\frac{e^{\frac{2}{x}\ln(1+x)-2}-1}{x}

e2limx2xln(1+x)2xe^2\lim_{x\rightarrow\infty}\frac{\frac{2}{x}\ln(1+x)-2}{x}

根据洛必达法则得原式=2e2limx11+x12x根据洛必达法则得原式=2e^2\lim_{x\rightarrow\infty}\frac{\frac{1}{1+x}-1}{2x}

=e2=-e^2

所以limx(1+x)2xe2(1ln(1+x))x=0所以\lim_{x\rightarrow\infty}\frac{(1+x)^{\frac{2}{x}}-e^2(1-\ln(1+x))}{x}=0

10.

an=cosθ2cosθ22cosθ2n,limnan设a_n=\cos{\frac{\theta}{2}}*\cos{\frac{\theta}{2^2}}\dots\cos{\frac{\theta}{2^n}},求\lim_{n\rightarrow\infty}a_n

θ=0,limnan=1若\theta=0,则\lim_{n\rightarrow\infty}a_n=1

θ0,则当n充分大,使得0<θ2n<π2若\theta\neq0,则当n充分大,使得0<|\frac{\theta}{2^n}|<\frac{\pi}{2}